A Theoretical Study of the Substituent Effects on the P-X (X = H, F, Cl) Bond Dissociation Energies in para- and meta-Substituted Aromatic **Phosphines**

Yu-Hui Cheng, Ying Fang, Xin Zhao, Lei Liu, *,† and Qing-Xiang Guo

Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China †Department of Chemistry, Columbia University, New York, NY 10027, USA

(Received December 3, 2001)

The P-X (X = H, F, and Cl) bond dissociation energies (BDEs) for a number of para- and meta-substituted aro $matic \ phosphines \ were \ calculated \ using \ R(O)MP2/6-311++g(d, 2p)//(U)B3LYP/6-31g(d) \ method. \ The \ results \ showed$ the importance of the radical effect as well as the ground effect on the BDEs. For X = H case, because the substituent affected the neutral phosphine to the same extent as it affected the radical, substituent effects on the P-H BDE were small $(\rho^+ = 0.28 \text{ kJ/mol})$. In comparison, for X = F or Cl case, because the substituent affected the neutral phosphine much more strongly than it affected the radical, substituent effects on the P-F ($\rho^+ = -3.25$ kJ/mol) or P-Cl ($\rho^+ = -1.31$ kJ/ mol) BDEs were significant. Therefore, the substituent effects on BDEs of the Z-X bonds in compounds of the general formula 4-YC₆H₄Z-X varied when X changed, which meant that a recent proposal (J. Am. Chem. Soc., 123, 5518 (2001)) was unfortunately not supported.

Bond dissociation energies (BDEs) are defined as the enthalpy changes of the following reaction in the gas phase:

$$X-Y \to X^{\bullet} + Y^{\bullet} \tag{1}$$

They are fundamentally important in chemistry and therefore, have been interesting for several decades. So far, although considerable efforts have been devoted to the development of experimental methods to measure BDEs, the BDE values for many important chemical species still remain unknown.²

Substituent effect is another interesting issue in the study of BDEs, an issue which has not yet been completely settled. For example, for some time it has been assumed that the direction and magnitude of the effects of Y-substituents on the Z-X BDEs in compounds of the general formula 4-YC₆H₄Z-X could be correlated with the polarity of the Z-X bond undergoing homolysis.³ However, in the very recent studies it was proposed that when Y have significant effects on Z-X BDEs it must be due to their stabilization or destabilization of the radical instead of the neutral compound regardless of the nature of X, Y, and Z.⁴ This argument was thought to be evidenced by the fact that the effects of Y on C-X BDEs in 4-YC₆H₄CH₂-X (X = H, F, Cl, Br) are roughly equal for each X, despite large changes in C-X bond polarity. The same argument was also thought to be supported by the fact that changes in O-X BDEs induced by changing Y in $4-YC_6H_4O-X$ (X = H, CH₃, CH₂Ph) are large and essentially identical for each X (ρ^+ = 6.7–6.9 kcal/mol).⁵ In addition, it was predicted that the effects of Y on N-X BDEs in 4-YC₆H₄NH-X were not only independent of X but were also of a magnitude intermediate between that of the 4-YC₆H₄O-X and 4-YC₆H₄CH₂-X families of compounds, namely, $\rho^+ \approx 3.0 \text{ kcal/mol.}^4$

Herein, we studied the P-X BDEs of a number of 4-YC₆H₄-PH-X and 3-YC₆H₄-PH-X (X = H, F, Cl) molecules. The questions which interested us include the substituent effects on the structures of the aromatic phosphines and their corresponding radicals, the substituent effects on the BDEs of the P-X bonds, and the relative importance of the ground effects and radical effects (See later discussion of this paper for definitions of ground and radical effects) on the P-X BDEs. With such information available, we could then examine if the aforementioned proposal about the BDEs of 4-YC₆H₄Z-X molecules was also correct for Z = P case. It should be mentioned that so far little has been known about the P-X BDEs, and no study has ever been performed on the substituent effects on phosphine radicals.

Methods

All the calculations were performed with GAUSSIAN 98.6 A series of fifteen para- and meta-substituted aromatic phosphines (Y-C₆H₄PH₂), and their fluorinated and chlorinated derivatives (YC₆H₄PH–F and YC₆H₄PH–Cl) were studied. As these fifteen substituents represented the most popular ones used for physical organic chemistry and their σ_p^+ (or σ_m) constants spanned a large range, we were confident that the linear energy relationship analyses on the basis of our calculation results were meaningful and reliable in term of statistics.

The geometries of the phosphine molecules and their corresponding radicals were fully optimized with (U)B3LYP/6-31g(d) method without any constraints. It should be mentioned that such a level of geometry optimization represented a good compromise between the CPU cost and the accuracy of the calculations for neutral molecules as well as radicals. In fact, the same method was used by Radom et al. very recently

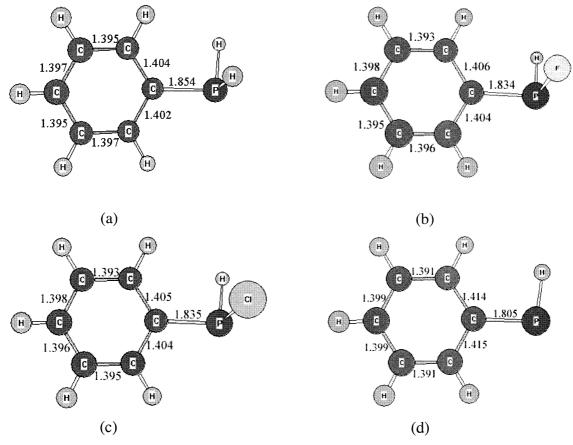


Fig. 1. The (U)B3LYP/6-31g(d) optimized structures of (a) H–C₆H₄PH₂, (b) H–C₆H₄PHF, (c) H–C₆H₄PHCl, and (d) H–C₆H₄-PH[•] species.

in their comprehensive study of the BDEs of even smaller substituted methyl radicals.⁷

After geometry optimization, frequency calculations were done on all the optimized species at (U)B3LYP/6-31g(d) level to verify that the optimized geometries were real minima on the potential surface (no imaginary frequencies). The total energy of every species was calculated at R(O)MP2/6-311++g(d,2p) level, and these results were corrected with zero point energies obtained at (U)B3LYP/6-31g(d) level scaled by a factor of 0.9806. It should be mentioned that the use of R(O)MP2 instead of UMP2 or PMP2 method was to minimize the spin contamination, which had been previously shown to badly affect the accuracy of BDE calculations. Moreover, use of R(O)MP2 was found to be better than use of the DFT methods in the calculations of the radical stabilization energies (RSEs).⁷

The BDEs were calculated as the enthalpy changes of the reactions shown by Eq. 2 at 0 K. The RSEs were calculated as the enthalpy changes of the reactions shown by Eq. 3 at 0 K. The ground effects (GEs) of the bond dissociation, which could reveal the interaction between the substituent and neutral PHX group, were calculated as the enthalpy change of the isodesmic reaction shown in Eq. 4 at 0 K. Finally, the radical effects (REs), which could reveal any influence of the substituent on the stability of the R-PH radical, were calculated as the enthalpy changes of the isodesmic reaction shown in Eq. 5 at 0 K.

$$Y-C_6H_4-PH-X \rightarrow Y-C_6H_4-PH^{\bullet} + X^{\bullet}$$
 (2)

$$C_6H_5-PH-X + Y-C_6H_4-PH^{\bullet}$$

 $\rightarrow C_6H_5-PH^{\bullet} + Y-C_6H_4-PH-X$ (3)

$$C_6H_6 + Y - C_6H_4 - PHX \rightarrow C_6H_5 - PHX + Y - C_6H_5$$
 (4)

$$C_6H_6 + Y - C_6H_4 - PH^{\bullet} \rightarrow C_6H_5 - PH^{\bullet} + Y - C_6H_5$$
 (5)

Results and Discussion

1. Geometry. In Fig. 1 are shown the optimized geometries of $H-C_6H_4PH_2$, $H-C_6H_4PHF$, $H-C_6H_4PHCl$, and $H-C_6H_4-PH^{\bullet}$ species. From Fig. 1, it can be seen that from the neutral phosphines to their corresponding radicals the most significant change occurs in the C-P bond length. In detail, in $H-C_6H_4PH_2$ the C-P bond length is 1.854 Å, in $H-C_6H_4PHF$ it is 1.834 Å, in $H-C_6H_4PHCl$ it is 1.835 Å, and in $H-C_6H_4-PH^{\bullet}$ it is 1.805 Å. Presumably, the significant decrease in the C-P bond length is caused by the conjugation between the radical and the phenyl group.

Thus, we list the C–P bond lengths of all the *para*-phosphines and their corresponding radicals in Table 1. Using the Brown's σ_p^{+} and Jiang's σ_{JJ}^{-} substituent constants (Table 1), we also conducted the multi-variable linear regression analyses on the C–P bond lengths. The corresponding results are summarized in Table 2. Herein, it should be mentioned that

Y	$Y-C_6H_4-PH_2$	Y-C ₆ H ₄ -PHF	Y-C ₆ H ₄ -PHCl	Y-C ₆ H ₄ -PH [•]	$\sigma_{\!p}^{\;+}$	$\sigma_{\!\scriptscriptstyle JJ}$
Н	1.8540	1.8349	1.8341	1.8054	0.00	0.00
CH_3	1.8523	1.8314	1.8307	1.8029	-0.31	0.15
$N(CH_3)_2$	1.8439	1.8160	1.8176	1.7950	-1.70	1.00
NH_2	1.8455	1.8193	1.8201	1.7968	-1.30	_
OCH_3	1.8482	1.8248	1.8248	1.8003	-0.78	0.23
OH	1.8487	1.8255	1.8254	1.8008	-0.92	_
SCH_3	1.8504	1.8280	1.8281	1.7994	-0.60	0.62
F	1.8530	1.8327	1.8318	1.8049	-0.07	-0.02
Cl	1.8540	1.8356	1.8350	1.8044	0.11	0.22
CN	1.8528	1.8422	1.8443	1.8040	0.66	0.42
$COCH_3$	1.8522	1.8390	1.8418	1.8023	0.50	0.54
$CONH_2$	1.8532	1.8382	1.8409	1.8039	0.36	0.38
COOH	1.8514	1.8400	1.8427	1.8037	0.42	0.38
NO_2	1.8498	1.8441	1.8448	1.8048	0.79	0.36
CF_3	1.8536	1.8404	1.8430	1.8067	0.61	-0.01

Table 1. C-P Bond Lengths (Å) of para-Substituted Aromatic Phosphines (4-YC₆H₄PH₂, 4-YC₆H₄PH-F and 4-YC₆H₄PH-Cl) and of Their Corresponding Radicals Obtained at (U)B3LYP/6-31g(d) Level

Table 2. Results of Multi-Variable Regression Analyses of the C-P Bond Lengths against the Brown's σ_p^+ and Jiang's σ_{JJ} Substituent Constants^{a)}

System	Y-C ₆ H ₄ -PH ₂	Y-C ₆ H ₄ -PHF	Y-C ₆ H ₄ -PHCl	Y-C ₆ H ₄ -PH [•]
A	1.85308	1.83409	1.83379	1.80486
Error in A	0.00074	0.00034	0.00050	0.00025
В	0.00203	0.01130	0.01280	0.00264
Error in B	0.00074	0.00033	0.00050	0.00025
t value of B	2.74	33.64	25.69	10.45
C	-0.00497	0.00100	0.00483	-0.00593
Error in C	0.00182	0.00082	0.00122	0.00062
t value of C	-2.73	1.21	3.95	-9.57
Correlation coefficient r	0.860	0.996	0.993	0.987

a) The regression was done using the equation $R_{\text{C-P}} = A + B \cdot \sigma_p^+ + C \cdot \sigma_{JJ}$

the multiple-variable linear regression can show the dependence of a parameter y on a set of variables $x_1, x_2, ...,$ and x_n on the basis of the following equation

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$
 (6)

The coefficients a_0 to a_n can be optimized so that the difference between the expectation y values and actual y values is minimized. Under this condition, the sign and magnitude of each coefficient a_i could indicate the dependence of y on x_i .

It should also be mentioned that the Brown's σ_p^+ substituent constant reflects the polar induction/resonance effects of a substituent. Thus a positive σ_p^+ value means that a substituent is electron-withdrawing while otherwise it is electron-donating. In comparison, Jiang's σ_{JJ} constants were established on the basis of the ability of a para-substituent to stabilize the 4-Y-C₆H₄CH₂• radical via the so-called spin-delocalization effect. Recently we found that such a spin-delocalization effect actually reflects the ability of a substituent to stabilize any non-polarized π electrons (even in closed-shell molecules) in addition to the radicals. 11 Thus, we refer to the corresponding effect as the nonpolar π electron delocalization effect. It should be mentioned that the polar induction/resonance effect and the nonpolar π electron delocalization effect are orthogonal to each other.

From Table 2, it can be seen that there is a decent correlation between the C–P bond length and the Brown's σ_p^+ and Jiang's σ_{II} substituent constants for 4-Y-C₆H₄PH₂ as indicated by the fair correlation coefficient (r = 0.860). The errors in the coefficients A, B, and C are smaller than the absolute values of A, B, and C. Therefore, qualitatively it can be concluded from the positive coefficient ahead of σ_p^+ (B = 0.00203 ± 0.00074) that electron-withdrawing substituents should increase the C-P bond length whereas electron-donating groups should decrease it. The reason for such an effect may be the polarization of the C-P bond, namely, C being the positive end of the bond whereas P being the negative end. As such, an electron-withdrawing para-substituent should remove some negative charge from P and thereby increase the C-P bond length. By contrast, the coefficient ahead of σ_{JJ} is negative ($C = -0.00497 \pm 0.00497$ 0.00182). This means that for the substituent that can better stabilize non-polarized π electrons (here presumably the lone pair electrons on P), the C-P bond is shorter. The reason for it apparently is the increase of the covalent bond order of C-P by the nonpolar π electron delocalization. Finally, it should be mentioned that the t-values¹² for B and C (2.74 vs -2.73) are both large and almost equal to each other for the 4-Y-C₆H₄PH₂ system. Therefore, both the polar induction/resonance and the nonpolar π electron delocalization effects are important for the C-P bond length in this system.

Y RE		4-YC ₆ H ₄ PH -H			4	$4-\mathrm{YC}_6\mathrm{H}_4\mathrm{PH}$			4-YC ₆ H ₄ PH –Cl		
1	KL	BDE	GE	RSE	BDE	GE	RSE	BDE	GE	RSE	
H	0.00	299.03	0.00	0.00	421.94	0.00	0.00	282.27	0.00	0.00	
CH_3	1.86	298.26	1.09	0.77	422.16	2.08	-0.22	282.94	2.53	-0.67	
$N(CH_3)_2$	13.16	296.59	10.72	2.44	423.92	15.14	-1.98	283.67	14.55	-1.39	
NH_2	3.72	297.73	2.42	1.30	423.45	5.22	-1.51	282.98	4.42	-0.70	
OCH_3	3.22	298.09	2.28	0.94	423.42	4.70	-1.48	283.43	4.37	-1.15	
OH	1.92	298.88	1.77	0.15	423.22	3.20	-1.28	283.04	2.69	-0.77	
SCH_3	3.43	298.35	2.75	0.68	422.09	3.58	-0.15	282.58	3.74	-0.30	
F	-0.60	299.44	-0.20	-0.41	422.26	-0.28	-0.32	282.24	-0.64	0.03	
Cl	0.45	298.78	0.21	0.25	421.36	-0.13	0.58	281.88	0.06	0.40	
CN	-1.14	297.96	-2.22	1.08	416.71	-6.37	5.22	280.13	-3.29	2.14	
$COCH_3$	0.97	296.94	-1.12	2.09	417.52	-3.44	4.42	281.43	0.13	0.84	
$CONH_2$	0.78	297.92	-0.33	1.11	417.93	-3.23	4.01	281.44	-0.05	0.83	
COOH	0.36	297.70	-0.98	1.34	417.44	-4.14	4.50	281.09	-0.82	1.18	
NO_2	-1.73	299.43	-1.33	-0.40	416.74	-6.93	5.19	280.48	-3.53	1.79	
CF_{\circ}	-0.44	297 77	-1.70	1.26	417 99	-438	3 95	281.02	-1.69	1.25	

Table 3. Bond Dissociation Energies, Radical Stabilization Energies, Ground Effects, and Radical Effects Calculated for the *para*-Substituted Aromatic Phosphines (kJ/mol)

From Table 2 it can be seen that the *para* substituent effects on the C-P bond lengths in the 4-Y-C₆H₄PHF and 4-Y-C₆H₄PHCl systems are also significant, as indicated by the high correlation coefficients (0.996 and 0.993). Here, the positive regression coefficients ahead of σ_p^+ (0.01130 \pm 0.00033 and 0.01280 ± 0.00050) again indicate that the polar induction/resonance effects are important to the C-P bond length in the way that an electron-withdrawing substituent elongates this bond. However, the errors for the coefficients ahead of σ_{IJ} are almost as large as the coefficient themselves. This means that the dependence of the C–P bond length on the nonpolar π electron delocalization effect is not significant in the two systems, presumably because the F and Cl atoms greatly alter the energy level of the lone pair electrons on P, so that their conjugation with the para-substituents is not effective. Thus, only the polar induction/resonance effects are important to the C-P lengths in the 4-Y-C₆H₄PHF and 4-Y-C₆H₄PHCl systems. The same conclusion can also be drawn from the t-value analyses of the regressions (33.64 vs 1.21, and 25.69 vs 3.95).

Interestingly, the situation is different again when we consider the C-P bond lengths in the Y-C₆H₄-PH[•] systems. Here, the correlation coefficient is high (0.987), indicating strong dependence on the substituent effects. As the t-values for both the σ_p^+ and σ_{JJ} constants are large (10.45 vs -9.57) and they are almost equal to each other, it can be concluded that both the polar induction/resonance effects and nonpolar π electron delocalization effects are important for the C-P bond length. The same conclusion can also be drawn from the fact that the errors for regression coefficients B and C are much smaller than the absolute values of B and C themselves. Since B is positive, an electron-withdrawing substituent will increase the C-P bond length while an electron-donating one should shorten it. Since C is negative, a stronger nonpolar π electron delocalization between the substituent and the single (π) electron on P radical should shorten the C-P bond.

2. Bond Dissociation Energies. Before talking about the BDEs of aromatic phosphines, we need to mention that the only P-H BDE we have found in literature is that for PH₃. This

value was measured to be 345.0 ± 1.9 kJ/mol at 0 K. In comparison, our calculated value for the same bond dissociation is 317.4 kJ/mol at R(O)MP2/6-311++g(d,2p)//(U)B3LYP/6-31g(d) level. Thus, our calculated value is 27.6 kJ/mol lower than the experimental value, which is true for most current theoretical calculations on BDEs. 7,8 We believe that similar underestimation should apply for our calculated P-X BDEs values for aromatic phosphines listed in Table 3. In other words, the experimental P-H BDE for a compound like H-C₆H₄-PH₂ should be about 326.6 kJ/mol. This value is about 18.4 kJ/mol lower than that found for PH₃, indicating the radical stabilization effect of the aromatic ring. Nevertheless, because of the error cancellation in the calculation of a series of substituted compounds, the calculated RSEs should be much more accurate. 4,7,8,13 The large number of substituents (fifteen) being used should also establish the statistical reliability of the following analyses.

From Table 3, it can be seen that P–F bond is the strongest, followed by P–H bond, and then P–Cl bond. The polar induction/resonance substituent effects on the BDEs can be reflected by a Hammett-type regression, as shown in the following equations:

BDE_{P-H} = 298.23 (±0.22)
+ 0.28 (±0.29)
$$\sigma_p^+$$
 ($r = 0.26$) (7)

BDE_{P-F} = 420.06 (±0.33)
- 3.25 (±0.44)
$$\sigma_p^+$$
 ($r = 0.90$) (8)

BDE_{P-Cl} = 281.85 (±0.12)
- 1.31 (±0.15)
$$\sigma_n^+$$
 (r = 0.92) (9)

From the above equations, it can be seen that the polar induction/resonance substituent effects on the P–H BDEs are small. This fact is not only reflected by the small ρ^+ value (0.28 kJ/mol) or its large error (0.29 kJ/mol), but also indicated by the poor correlation coefficient (r=0.26). Interestingly, it should be mentioned that the ρ^+ value for P–H BDEs is actual-

Table 4. Results of Dual-Parameter Regression Analyses of the P–X BDEs against the Brown's σ_p^+ and Jiang's σ_{JJ} Substituent Constants^{a)}

ly smaller than that previously reported for C–H BDEs in toluenes ($\rho^+ = 0.5 \text{ kcal/mol}$).⁴

By contrast, the polar induction/resonance effects of *para* substituents on the P–F BDEs of 4-YC₆H₄PH-F are much more significant ($\rho^+ = -3.25$ kJ/mol). Compared to the values of ρ^+ for O–H BDEs in phenols ($\rho^+ = 6.9$ kcal/mol)⁴ and for N–H BDEs in anilines ($\rho^+ = 3.0$ kcal/mol),⁴ the above value is very interesting because it is negative. This means that unlike what happens to the O–H BDEs in phenols or N–H BDEs in anilines, the electron-withdrawing substituents reduce the P–F BDEs whereas the electron-donating ones increase the P–F BDEs. The relatively high correlation coefficient (0.90) and the small error for ρ^+ (0.44 kJ/mol) also indicate that the ρ^+ value is real.

Similarly, the effect of *para* substituents on the P–Cl BDEs of 4-YC₆H₄PH–Cl is also significant ($\rho^+ = -1.31$ kJ/mol). This value is located between that of P–H and of P–F. It is also statistically reliable because of the good correlation coefficient (0.92) and the small error found for ρ^+ (0.15 kJ/mol).

Thus, the fact that the ρ^+ values for H, F, and Cl are significantly different means that the previous hypothesis⁴ is unfortunately not justified. In other words, the effects of Y on P–X BDEs in 4-YC₆H₄PH–X (X = H, F, Cl) are not equal for each X, which is different from the substituent effects observed for C–X BDEs in 4-YC₆H₄CH₂–X (X = H, F, Cl, Br) and O–X BDEs in 4-YC₆H₄O–X (X = H, CH₃, CH₂Ph).⁴

The above discrepancy can be explained if the stabilization/ destabilization effects of the substituents on the neutral compounds before bond cleavage are considered. Thus, we perform Hammett-type regressions on the calculated GEs and REs for the three groups of phosphines, as shown in the following equations:

RE = 1.15 (±0.54) - 3.88 (±0.72)
$$\sigma_p^+$$
 (r = 0.83) (10)

$$GE_{P-H} = 0.36 (\pm 0.41) - 3.60 (\pm 0.55) \sigma_p^+ (r = 0.88)$$
 (11)

$$GE_{P-F} = -0.72 (\pm 0.45)$$

$$-7.12 (\pm 0.59) \sigma_p^+ (r = 0.96)$$
(12)

$$GE_{P-Cl} = 0.73 (\pm 0.53) - 5.18 (\pm 0.70) \sigma_p^+ (r = 0.90) (13)$$

From the above equations it can be seen that the RE, which is the same for all the P–X systems, has a modestly strong de-

pendence ($\rho^+=-3.88$ kJ/mol) on the substituents. In comparison, GE_{P-H} has a ρ^+ value of -3.60 kJ/mol. As such a value is not very different from that for RE, it is immediately clear that the remote substituent effect on the P–H BDEs should be very small. By contrast, the ρ^+ value for GE_{P-F} is -7.12 kJ/mol, and -5.18 kJ/mol for GE_{P-Cl} . Since these two values are both significantly more negative than that for RE, it can be expected that the *para* substituent effects on P–F and P–Cl BDEs should be significant. Thus, the different substituent effects exhibited by different P–X systems are caused by the different ground effects, or in other words, the different abilities of the substituents to stabilize/destabilize the neutral molecules before bond homolysis.

The above opinion is in agreement with many former studies, ¹⁴ where it was suggested that the ground effects could not be ignored in the consideration of BDEs. Thus, the negligible ground effects observed for the C–X BDEs in 4-YC₆H₄CH₂–X (X = H, F, Cl, Br) and O–X BDEs in 4-YC₆H₄O–X (X = H, CH₃, CH₂Ph)⁴ may be caused by the fact that in these systems the substituent stabilization/destabilization effects on the neutral compounds are fortuitously too small.

3. Nonpolar π Electron Delocalization Effects on P–X BDEs. From the above discussions it is clear that the polar induction/resonance effects cannot account for all the substituent effects observed for P–X BDEs. Thus, we need to look into the role of the other type of substituent effect, spin delocalization or more generally, nonpolar π electron delocalization effect. For that purpose, we conducted dual-parameter regressions on the BDEs of P–X bonds against σ_p^+ and σ_{JJ} constants, whose results are summarized in Table 4.

From Table 4, it can be seen that the P–H BDEs do not have significant (if any) dependence on the polar induction/resonance effect, which is shown by the large error in the estimation of the coefficient before σ_p^+ as well as the small t-value found for the coefficient. In comparison, the dependence of the P–H BDEs on the nonpolar π electron delocalization effect is significant. This is not only indicated by the fact that the error for the coefficient before σ_{IJ} is smaller than the coefficient itself, but also suggested by the relatively large t-value found for the coefficient. Nevertheless, it can be noticed that the total regression for P–H BDEs is poor (r = 0.658). This suggests that the nonpolar π electron delocalization substituent constants obtained from the carbon radicals are not adequate for other elements. The detailed reason for this remains to be clar-

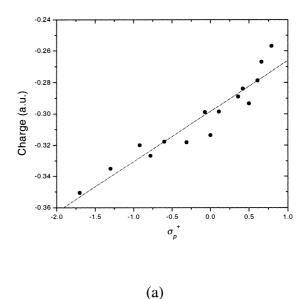
a) The regression was done using the equation BDE_{P-X} = U + V· σ_p ⁺ + W· σ_{JJ}

Table 5. The Mulliken Charge and Spin Density at the Phosphorous Atom in $4-YC_6H_4PH^{\bullet}$ Radicals Calculated from the R(O)MP2/6-311++g(d,2p) Populations (a.u.)

Y	Charge	Spin		
Н	-0.313637	0.926498		
CH_3	-0.318155	0.925513		
$N(CH_3)_2$	-0.350577	0.914662		
NH_2	-0.335189	0.917119		
OCH_3	-0.326822	0.921730		
OH	-0.320057	0.921949		
SCH_3	-0.317667	0.921215		
F	-0.298904	0.926286		
Cl	-0.298615	0.926221		
CN	-0.267148	0.922655		
$COCH_3$	-0.293254	0.922967		
$CONH_2$	-0.289023	0.924904		
COOH	-0.283958	0.923784		
NO_2	-0.256749	0.923186		
CF ₃	-0.278784	0.927301		

ified.

In contrast to the P–H BDEs, P–F, and P–Cl BDEs show good correlations with the two types of substituent constants. In particular, they show very strong dependence on the polar induction/resonance effect, which is indicated by the large t-values found for the coefficients before σ_p^+ . In comparison, the nonpolar π electron delocalization effect plays a less important role for P–F and P–Cl BDEs.


Thus, the above analyses show that the polar induction/resonance effect and the nonpolar π electron delocalization effect both affect the P–X BDEs. However, it is known that the former effect can easily outweigh the latter one. Therefore, for P–F and P–Cl BDEs where the starting material 4-Y–C₆H₄–PHX (X = F or Cl) and product 4-Y–C₆H₄–PH $^{\bullet}$ are quite different in term of the polarity, the former effect is more important. On the other hand, for P–H BDEs where the starting material 4-Y–C₆H₄–PH $^{\circ}$ and product 4-Y–C₆H₄–PH $^{\bullet}$ are not expected to be very different in term of the polarity, the role of the second effect becomes clear.

4. Charge and Spin Delocalization. For the radicals, it is found that the Mulliken charge (Table 5) on the phosphorus atom is in good linear correlation with the substituent σ_p^+ constants (r = 0.95) (Fig. 2a). However, correlation of the charge with the substituent σ_{IJ} constants is very poor (r = -0.33). Clearly, the charge distribution mainly relies on the polar resonance effect.

By contrast, the spin on the phosphorus atom does not correlate with the σ_p^+ constants well (r=0.74). Use of σ_{JJ} constants (Fig. 2b) results in a significantly better correlation (r=0.91), indicating the importance of the nonpolar π electron delocalization effect on the spin delocalization.

Thus, the charge and spin densities again show the different effects of the polar resonance effect and nonpolar π electron delocalization effect on the P–X BDEs.

5. *meta***-Substitution Effect.** In Table 6 are listed the calculated BDEs for *meta*-substituted aromatic phosphines. On the basis of these BDEs, the *meta*-substituent effects on the P–H, P–F, and P–Cl BDEs can be revealed from the following

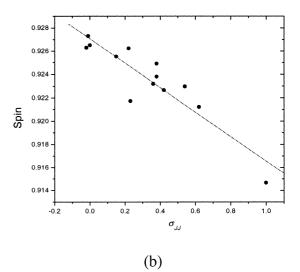


Fig. 2. The correlations of the Mulliken charge and spin density of the phosphine radicals with the Brown's σ_p^+ and Jiang's σ_{JJ} substituent constants.

linear regressions against the substituent σ_m constants:

BDE_{P-H} = 299.24 (±0.24)
+ 1.63 (±0.69)
$$\sigma_m$$
 ($r = 0.54$) (14)

BDE_{P-F} = 422.81 (±0.42)

$$-5.42$$
 (±1.23) σ_m ($r = -0.77$) (15)

BDE_{P-H} = 283.73 (±0.40)
- 3.42 (±1.19)
$$\sigma_m$$
 ($r = -0.62$) (16)

Comparing the above equations with Eqs. 7-9 we can see that correlations of the *meta*-substituent effects on the P–X BDEs with the substituent constants are not as good as they are in the *para*-substitution case. Not only are the correlation co-

Table 6. Bond Dissociation Energies Calculated for the *meta*-Substituted Aromatic Phosphines (kJ/mol)

efficients lower for the *meta*-substitution case, but also the errors in the estimated slopes of regressions are larger.

Nevertheless, the *meta*-substituent effects are consistent with what we observe for the *para*-substitution case. First, the P–H BDEs have a positive correlation with the substituent σ_m constants. Therefore, an electron-withdrawing group would increase the P–H BDE, whereas an electron-donating one would decrease the P–H BDE.

In comparison, the P–F and P–Cl BDEs have negative correlations with the substituent σ_m constants. The absolute slope of the regression for the P–F BDEs is larger than that for the P–Cl ones. These negative correlations mean that an electron-donating substituent should increase the P–F or P–Cl BDE, while an electron-withdrawing one should reduce it. Explanations for all these effects are presumably the same as those for the *para*-substitution case as discussed above.

Conclusion

We have studied the P–X (X = H, F, and Cl) bond dissociation energies for a number of *para*- and *meta*-substituted aromatic phosphines. The results showed the importance of the radical effect as well the ground effect on the BDEs. For X = H case, because the substituent affected the neutral phosphine to the same extent as it affected the radical, substituent effects on the P–H BDE were small. In comparison, for X = F or Cl case, because the substituent affected the neutral phosphine much more strongly than it affected the radical, substituent effects on the P–F or P–Cl BDEs were significant. Therefore, the substituent effects on BDEs of the Z–X BDEs in compounds of the general formula 4-YC₆H₄Z–X varied when X changed, which was in contrast to a recent proposal.

We are grateful for NSFC for the financial support.

References

1 a) D. F. McMillen and D. M. Golden, *Ann. Rev. Phys. Chem.*, **33**, 493 (1982). b) J. Berkowitz, G. B. Ellison, and D.

Gutman, J. Phys. Chem., 98, 2744 (1994).

- 2 a) F. G. Bordwell and X.-M. Zhang, *Acc. Chem. Res.*, **26**, 510 (1993). b) L. J. J. Laarhoven, P. Mulder, and D. D. M. Wayner, *Acc. Chem. Res.*, **32**, 342 (1999).
- 3 K. B. Clark, and D. D. M. Wayner, *J. Am. Chem. Soc.*, **113**, 9363 (1991).
- 4 D. A. Pratt, J. S. Wright, and K. U. Ingold, *J. Am. Chem. Soc.*, **121**, 4877 (1999). b) D. A. Pratt, M. I. de Heer, P. Mulder, and K. U. Ingold, *J. Am. Chem. Soc.*, **123**, 5518 (2001).
- 5 As normally defined, ρ^+ is the slope of the linear regression of BDEs against the substituent σ_p^+ constants.
- 6 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, "Gaussian 98, Revision A.7," Gaussian, Inc., Pittsburgh PA (1998).
- 7 D. J. Henry, C. J. Parkinson, P. M. Mayer, and L. Radom, *J. Phys. Chem. A*, **105**, 6750 (2001).
- 8 a) C. J. Parkinson, P. M. Mayer, and L. Radom, *Theor. Chem. Acc.*, **102**, 92 (1999). b) C. J. C. J. Parkinson, P. M. Mayer, and L. Radom, *J. Chem. Soc.*, *Perkin Trans.* 2, **1999**, 2305.
- 9 A. Leo. C. Hansch and R. W. Taft, *Chem. Rev.*, **91**, 165 (1991).
 - 10 X.-K. Jiang, Acc. Chem. Res., 30, 283 (1997).
- 11 K.-C. Zhang, Y.-H. Cheng, L. Liu, and Q.-X. Guo, unpublished results.
- 12 *t*-value for a regression coefficient in a multi-variable regression equation implies the importance of the corresponding variable in the model. Theories of *t*-value analysis can be found in any college-level book on statistics.

- 13 In fact, radical stabilization energies calculated even at lower levels of methods, e.g. B3LYP/6-31g(d), were usually considered to be accurate enough for regression analyses about the substituent effects. For recent examples, see: a) Y.-D. Wu, C.-L. Wong, K. W. K. Chan, G.-Z. Ji, and X.-K. Jiang, J. Org. Chem., 61, 746 (1996). b) Y.-D. Wu and D. K. W. Lai, J. Org. Chem., 61, 7904 (1996). c) W. M. Nau, J. Org. Chem., 61, 8312 (1996). d) T. Brinck, M. Haeberlein, and M. Jonsson, J. Am. Chem. Soc., 119, 4239 (1997). e) W. M. Nau, J. Phys. Org. Chem., 10, 445 (1997). f) G. P. Bean, Tetrahedron, 54, 15445 (1998). g) H.-Y. Zhang, and D.-Z. Chen, Chin. Chem. Lett., 11, 727 (2000). h) H.-Y. Zhang and D.-Z. Chen, Chin. J. Org. Chem., 21, 66 (2001). I) Y.-M. Sun, H.-Y. Zhang, and D.-Z. Chen, Chin. J. Chem., 19, 657 (2001). j) Z. Wen, Z.-C. Li, Z.-F. Shang, and J.-P. Cheng, J. Org. Chem., 66, 1466 (2001).
- 14 a) C. Ruchardt, *Angew. Chem., Int. Ed. Engl.*, **9**, 830 (1970). b) A. Pross, L. Radom, and N. V. Riggs, *J. Am. Chem. Soc.*, **102**, 2253 (1980). c) R. D. Topsom, *Acc. Chem. Res.*, **16**,

- 292 (1983). d) A. M. de P. Nicholas and D. R. Arnold, *Can. J. Chem.*, **62**, 1850 (1984). e) W. M. Nau, H. M. Harrer, and W. Adam, *J. Am. Chem. Soc.*, **116**, 10972 (1994).
- 15 The dual parameter regressions involve the use of two independent substituent constants, for example, σ_p^+ and σ_{IJ} . Needless to say, this means that the quality of regression should always be better than that with a single variable. However, from the statistical analyses of regression indexes such as *t*-values and coefficient errors we would still be able to obtain a lot of valuable information about the dependence of the properties on the parameters. For more discussions, see: a) Y.-H. Zhang, C.-M. Zhou, B. Jiang, and X.-K. Jiang, *Chin. J. Chem.*, **12**, 516 (1994). b) Y.-H. Zhang, B. Jiang, and X.-K. Jiang, *Chin. J. Chem.*, **15**, 395 (1997). c) W.-F. Ding and X.-K. Jiang, *Chin. Chem. Lett.*, **9**, 385 (1998). d) R. H. He and X.-K. Jiang, *Chin. Chem. Lett.*, **10**, 499 (1999).
- 16 a) S. S. Kim and C. S. Kim, *J. Org. Chem.*, **64**, 9261 (1999). b) S. S. Kim, Y. Zhu, and K. U. Lee, *J. Org. Chem.*, **65**, 2919 (2000).